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ABSTRACT

This report is a continuation of earlier studies in the development

of the theory of differential games with information time lag (DGWITL).

Pertinent aspects of the theory of differential games with information

time lag are summarized. The generalized Hamilton-Jacobi equation for the

linear regulator game is shown to have a G-parametric solution in the

data-reference plane. The main effort in this report has been to provide

examples which demonstrate both the applicability of the theory of DGWITL

and the importance of information delay considerations in control law synthesis.

Examples illustrate the performance degradation that can accompany a failure

to compensate for information delay in differential games. At the same time,

the quantitative effects displayed in the examples serve to motivate questions

relevant to engineering tradeoffs between control law design and system design.
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I. INTRODUCTION

In discussing some possible extensions of his work on differential games (DG),

Isaacs mentioned the need for a relaxation of the assumption that each player in

a DG has perfect information [1]. In many practical situations of dynamic conflict,

the assumption cannot be justified. A particular problem which Isaacs cited is

that in which a player in a DG has a time lag associated witih the availability

of his measurements of the opponent's state vector. In practice, such delays can

occur in a DG when data processing and/or transmission takes place prior to the

generation of control signals. The importance of the problem stems from the

practical need to know precisely how much information delay leads to intolerable

performance degradation. At the same time, knowledge of the effects of time delay

might permit relaxation of system design specifications to achieve an overall

economy of design while maintaining acceptable performance.

The historical basis for the problem appears to be the classical "bomber-

battleship duel", in which a bomber must take into account ordnance delivery time

in deciding when to strike an evasive battleship. Since 1950, a number of papers

have successfully treaced the bomber-battleship duel as a multistage game with

probabilistic strategies [2-9]. However, no treatment of the more general problem

was presented, and little was known about the possible affects of information

delay in dynamic conflict. Subsequently, Ciletti [10] treated finite games,

multistage games and a class of differential games in which one player has an

information time lag. Function space methods provided the solution to versions

of the well known linear regulator differential game with information time lag

(DGWITL) in [11, 12, 13]. The above-referenced works showed that a) the player

with information lag can construct a payoff bound and an Associated worst-case
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strategy by considering past as well as future behavior of his opponent,

b) an optimal control problem must be solved to provide the boundary condition

for the game with information time lag, and c) the opponent's strategy which

induces the worst-case payoff - an ideal exploitation strategy - is not

physically realizable because it requires knowledge of future states. These

structural features were shown to be common to finite, multistage and differential

games with information time lag. N-player DGWITL (linear plants, quadrati-

payoffs) also admit to analysis by function space methods [14]. Despite the

availability of results for the linear problem, there was a lack of results for

more general systems and payoffs. Then, an extension of the well-known Hamilton-

Jacobi theory fox optimal control and the familiar "main equation" analysis of

Isaacs was developed to treat DGWITL [15]. The Hamilton-Jacobi equation was

shown to have a dual-time-reference form in which the observation times (T,t) cf

the state vectors (x(T),y(t)) as well as the spatial data appeared. It was pointed

out that, in general, an optimal control problem must be solved to provide the

boundary condition for the potential value function, V°(x,T,y,t) over the T-t

data reference plane. The generalized Hamilton-Jacobi equation for V0 (x,,y, t)

over the T-t plane can be converted to a partial differential equation in t

along the line T - t-o for fixed a to produce the equation satisfied by the

parametric solution, V (x,y,t;a) [16]. In an independent work, Sokolov and

Chernous'ko (17, 181 showed that, under certain conditions of separability, a

class of DGWITL can be Lonsidered equivalent to a related DG without information

time lag. PetrosJan [19] treated a discretization of a DGWITL within the context

of mixed strategies.

This paper continues the developments of [15,161. Section II briefly sia-

rizes the main results of [15,16), and Section III demonstrates the application

of the theory for DGWITL to the well-known linear regulator game. The problem will

be solved in closed form over the data reference plane to provide feedback control
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laws which optimally utilize the delayed information. We also present the

specialized solution along the locus of play for fixed a. Structural properties

which distinguish DGWI17 control laws from suboptimal control laws are examined.

Section IV presents results of practical significance. By means of a simple

two-dimensional example, we examine the precise effects of information time lag

on the outcome of a game. Then we consider alternate control schemes which may

be suggested for use in DGWITL. Simulation results show the effect of using the

DGWITL optimal strategy, a direct insertion feedback strategy (DIFBK), and a

simple predictor feedback scheme (PRFBK).

II. SUMMARY OF DGWITL THEORY

As a point of reference for the ensuing work, we begin with the dynamic

syster-s controlled respectively by the pursuer (P) and the evader (E):

x f f(xu(t),t) (la)

= g(y,v(t),t) (lb)

when x,y E R ,u Rqv e Rm At each time t the control. inputs u and v are to be

determined by control laws u and v which are members of sets Ku and Kv, where

Ku = {u:Rn x Rn x RI A } Ky = {v:Rn x R x R1 + A CRm}, A and A are

locally compact, ar4 -"embers of K and K are continuous in t and Lipschitzianu v

in (x,y). Given regions G and G to which motions of (la) and (lb) are restricted

and a target set S C G = G x G v, we form Ka C K x K to include only those controlu va u v

law pairs which produce for any initial phase in G-S a solution which reaches S

without leaving G. Accordingly, the terminal time, tf (depending on xoyo,t,,u'v)

is the first instant at which a solution to (1) penetrates S . With (u,v) E Kas

(X 0 ,toyo,to) c G, we associate a scalar payoff made by P to E and defined by:



tf
J(xo,3Yopto0*u,v) t tf LlI(X(a),u(x(a),y(m),a),a)da

0

tf

+ tf L2(y(a),v(x(a),y(a),a),a)da

+ W (x(tf),Y(tf),tf)

where x(.) and y(.) are understood to be the solution to (1) associated with

the control law pair (u,v).

The methodology of game theory then centers about the task of finding a

saddlepoint of J(') w.r.t. u and v. The well-known results are that under

appropriate smoothness assumptions the saddlepoinr, or value, V*(.), satisfies

a Hamilton-Jacobi type partial differential equation. The analysis also produces

an implicit definition of the optimal strategies in terms of the states and the

components of the gradient of V*(.). Solution of the HJE leads to closed form

explicit definitions of the control laws u° and v° which induce the saddlepoint.

Thus, implementation of the control laws requires that x(t) and y(t) be a'.ilable

to each player at every t.

The class of DGWITL which are studied here are those in which the evader E

has access to x(t-a) instead of x(t) at each time t. As shown in [15], this leads

naturally to consideration of control laws u(.) and v(') which are maps on

Rn x R1 x R7 x R1 so that temporal references as well as spatial data may be

considered. This also leads to study of the following coupled dynamical systems:

d
dt x(t-o) = f(x(t-a),u(x(t-a),t-a,y(t),t),t-a) (2a)

dd-- y(t) - g(y(t),v(x(t-o),t-a,y(t),t),t) (2b)

I mn mnnnnm u •un m m nulnm m ~ um uuum luu~ w • •
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with x(t -a) Xo, y(to) - yo. This system is one which the evader can think

of as defining the evolution of his observations in time. The usual structural

assumptions on u(') and v(-) are made here to provide the existence of a unique

solution to (2).

We then address the question of termination. Upon receipt of data (x,T,yt)

E must first decide whether the game is over, i.e., could P have applied controls

over [r,t] in such a manner that the path emanating from x puts the present phase

on S? This leads to an open loop boundary value control problem and the following

definitions.

n R1 n
Def. The preliminary target set, Sp is the set of all (xryt) c R x R x i x R

having the property that there exists a piecewise continuous u(.):[T,t] - T' and

(x, Ty,t) E S, where x is understood to be the solution of (la) at time t > T when

driven by u from (x,r). Members of S will be called potentially terminal phases.

Def. The potential terminal time, tp (xo, oy 0 ,t 0 ,Uv) is the smallest t such

that the motion of (1) is a member of S . Figure 1 illustrates a potentially
p

terminal phase and a preliminary target set. Various uC() may be available for

termination, and E has no way of knowing which, if any, have been used by P.

Def. For a potentially terminal admissible pair (u,v) we define the remaining

payoff:

t -a
Jr(XoC PToY,touu,v) = Tf P L1 (x(a) ,u(x(c),a,y()a+a) ,c+a) , a) da

0

t
"+ tf P L (y(a),v(x (a-a), a-o,y(a), a),a) do

0

t AU
"+ f- p L (x(a),'u(ca),a)da +W(x(t ),y(t ),tp)

t 1 p p p
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Def. The potential terminal payoff on S is given by:P

W(x,r,yt) f minW(x(t ),y(t ),tp) +
EK p p

u

t
fP pTf Ll(X(a),u(a),a)da

Def. The potential payoff, J (.), is defined to be:
p

Jp(XooY,to) = W(X(t -a),t -O,y(t ),tp)
p0000p p p p

t -a
+ f P LI(x(a) ,u(x(a) ,a,y(a+a) ,a+ca) ,a)da

0

t
+ tf P L2 (Y(a),v(x(a-a),a-c-,y(a),c)da

0

The problem of DGWITL is that of finding the potential value, V'(.), or the

saddlepoint of J (.) w.r.t. u and v (we assume that V*(') exists). With each

(x,T,y,t) we associate V0 (x,T,y,t), and the results of [15] show that, under

the assumption that V0 (-) is continuousl) differentiable in its argument

in G-S , the potential vwlue satisfies the following generalized Hamilton

jacobi equation:

+--- - + HO(x,T,y,t,V0 ,V) = 0 (3)
?T at x -y

where:

HO(x), ,tpxV,) -- y,,',lvv x y2',y,' a,t,v*,vo),X y Y Ix Y x
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min max H(x,t,y,t,p,O,AxA ) = max min H(x,r,y,t,ii,8,A A =

= H(x,T,yt,k (x,'r,y,t,A A y) (x,T,Y,t,Ax,),X,'A

and
H(-) <A xf(x,I,T)> + <A yg(y,$,t)> + LI(x,u,r) + L2 (Y,B,t)

with

" £ Au RRq, 8 £ A CRm, R7 ,y Rn.

The generalized Harmilton-Jacobi equation is defined on the playing space for

P and E and over the T-t "data reference plane"; its boundary condition is

given by the potential terminal payoff, W(.), on S . The novel feature ok this' p

equation is the presence of T, the time corresponding to the delayed state

variable x. In optimal control problems and in DG with perfect information,

it is implicit that all spatial variables are associated with a single time, t.

The procedure for forming the generalized Hamilton-Jacobi equation specifies

the control law for E which implements the data (x,r,y,t) in an optimal fashion

while accounting for the age of the data.

NII LINEAR REGULATOR REVISITED

We now present the linear regulator as an example to illustrate application

of the theory of DGWITL to a tractable problem. The systems are described by

x A (t)x(t) + B (t)u(t); x(T 0 x

A Ae(t)y(t) + Be(t)v(t); Y(to) =Yo

with u(t) £ Au ")v, v(t) E Av R" .

The target set is given by: S = {(x,t,y,t) : t - T}, therefore, the

preliminary target set is simply Sp {(x,r,y,t) : T-a, t=T}, where

p •mmm mm • mn • mm• l
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T 0 ' -t . Th( terminal time is tf = T, and the potential terminal time is

t p(X T , yo ,t o 3u,v) = T, since the game has specified duration. The remaining

payoff function i.s

J (x Toyotopuuv) = I x(T) - y(T) 12 +

fT aH 2 (i) dci TII' 1 juf~ca T11 1 1,2 (iTfT-°lu''2 +cd +T-ofTuIR2 (a) da - tf l[R (a) da

0 p p 0 e

where F_> 0, R(.) > 0, R (') > 0 , iuIl2() dnotes u'(a)R (a)u(a) and all

matrices ire of consistent dimension. The potential terminal payoff on S is the

solution to the following optimal control problem. Let (xT,y,t) e S, i.e.,

= T-o and t=T. Then:

W(xT-a,y,T) =_min_ IIx(T)-y12 + T-Il u. (11 ) da
uK p

and K is the set of piecewise continuous u: [T-a,T] - Rq. Function space or
u

other methods can be applied to this problem, and we simply provide here the

result:

W(x,T-a,y,T) =[p(T,T-a)x-y]'LF-l * SR S*]-l[(r,-)x-y]

where

S-'s* A rT P(T,c)Be(a)Rp (a)Bp(a)p(r,a)da
p T~a p

and Hp(') is the transition matrix for Ap(.). The optimal terminating control,
p p

u, is given by

u(c) (a)B'(ci)'(Ta)[F SR S*] [ý (TT-a)x-y],iE[T-aT]
pp p p p

Thus, u(-) is E's determination at time T of the best control P could have applied



- 10 -

over [T-a,T] from x(T-a) with knowledge of y(T). It follows that the potential

payoff is simply

Jp(Xoo,To,Yo'toU,V) (T,T-a)x-y]'[F-(I + SRylS*]-l[ p(T,T-o)x-y]

+tfT a I2 (,)do - 1 T vi 'R ()da
0 p 0 e

where x = x(T-a) and y = y(T). To apply the theory for DGWITL to this problem

we form the generalized pre-Hamiltonian:

H(x,Ty,t,.1,A X , ) 1j, <A p(T)x + B p(T)i,Xx > +

<A (t)y + B (t),0A > + <p,R (T)P> - <$,R (t)O>

e e y p e

The usual min max operation leads to:

k (x,,T5,yt, ,x y) -1 R1p(T)B'(T)XX
xy, p p x

k2(x,T,yjt, X 1,(y) =i (t)
2Xy 2 e

and the following generalized Hamiltonian

H (x, 1,y, t,( B (-r)•yAx

+ AA'B (t)Rl(t)Be(t)A + y'A'(t))y
4ye e e y e y

The generalized Hamilton-Jacobi equation satisfied by the potential value

is:



v°o + vt0 + x'AI(T)VO + y'Ae t)VO
T t p x e y

with boundary condition:

"i ° x ''t)0T;' (T, T-cy)x-y ] ' -+SR•I"]I[p('Tc -

It<-

------. - [F-I + SR-IS*p '[Op(T,T-a) -I] XY

where I denotes the identity matrix for n. We point out here that letting

040 and T-t produces the well know results for DG without time lag. Following

the procedures for linear optimal control and DG we next assume that

V (x, T,y, t) - P( T, t) X

where P(') is a 2n x 2n symmetric matrix. Then

V0 (x,T,y,t) = 2(P 1 l(T,t)x + P1 2 (T,t)y)X 111

Vy(X,T,y,t) = 2(P 1 2 (T,t)x + P2(T,t)y),

and we are naturally led to the condition:

0 = {~-(r,t) +D-(t,t) + P(T,t)A(T,t) + A'(T,t)P(T,t)

+ P(T,t)B(T,t)P(T,t)} [tX.
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in G -S with
p

A (T)I o r-B (T)-R 1(T)B(T) 0 el
(t)) ---- (T -- 1-------0 '1A e(t] 0 11 Be(t)R -l(t)S;(t)]

Ie e e

[Pn(Tt) P (rt)

and P(T,t) ----- (--t
LP12 (T 't) P 22(-,,t)]

Since the condition holds for arbitrary x and y, the following generalized

matrix Riccati equation must be satisfied over the T-t plane with T < t < T:

aP a+

3 (r,t) + -(T,t) + P(T,t)A(Tt) + A'(T,t)P(T,t)

+ P(T,t)B(T,t)P(T,t) = 0 (4)

subject to:

_(Tt, T--) -l -l

P(T,t) = [F + SR -S* [0 (T,T-a) I -I]. (5)

t=T

From the sufficiency theorem for DGWITL [15] we conclude that the non-realizable

optimal exploitation strategy for the pursuer is

U0 (X,T,y,t) = -RI (T)B'(T)[P (T,t)x + PF(t,t)y•.
pp 11 12 -

the DGWITL optimal strategy for the evader is:

v*(x,tyt) = Re (t)Be(t)[Pl 2 (T,t)x + (T,t)y,
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and the potential value is

V(x,T,y,t) =[ P(T,t) [Xl

in the neighborhood of (T-a,T) in which the solution to (4) is positive definite.

Although the quadratic payoff-linear control structure of the solution has been

preserved, it is important to note that the generalized Riccati equation is defined

on two temporal parameters, while the potential value is defined on the spatial

variables and their associated temporal parameters. This point is emphasized by

Figure 2, which illustrates the so-called "data reference plane" for this problem.

The shaded region of the plane below o=O(Trt) is that region over which (4) must be

solved. The line t=T is the locus on which the potential terminal payoff provides

boundary data for V0 (.) over the shaded region. If the DG with zero time lag has

already been solved, it may be used to provide boundary data along a-0. The

behavior of V° along a line of fixed t with T < t is the "aging data problem," a

problem of practical interest.

In general, the generalized HJE over the T-t plane must be converted to a

"delayed argument" partial differential equation in t along the line T = t-U. So,

we must convert the generalized Riccati equation in T and t into a Riccati equation

in t with parameter a appearing in delayed arguments of the time varying matrices.

That is, we wish to generate solutions in parametric form by solving the GHJE along

a fixed-a locus for a DGWITL in Figure 2. For a fixed o, let

P (t ; Cr) 4 , P (T , tl lT= t -0
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Then:

dP 3P L dr +P(
BT ~ dt a

Ttt-) Trot-a

It follows directly that the solu'.ion to (4) along the line T - t-0 with

boundary condition (5) must se.isfy:

!d

dtr(t;a) + P(t;a)A(t-a,t) + A'(t-a,t)P(t;a)

+ P(t;a)B(t-a,t)P(t;a) - 0 (6)

subject to:

0'CT,T..o) -1 -1
P(T;aC) 4.-[F + SR 5*] [O (T,T-.o)J -1] (7)

To indicate the solution along T - t-c we write:

V*(x,y,t;a) [JP(t;a)

u0 (x,y,t;a) - -Rpl(t-a)B'( t-U)rP (t;o)x + P1 2 (t;a)y]
p p ' 11 2tay

v°(x,y,t;a) - Rel(t)Be(t)[Pl 2 Qt;a)x + P1 2 (t;•)y]

Figure 3 illustrates the block diagram for the evader's DGWITL feedback

control law. For additional emphasis, we write x() - x(-) and x e() - y(.).

While the linear feedback structure has been preserved, the DGWITL control law

is distinct from the control law for the game with zero time lag. The important

difference is that the control law uses the pursuer's delayed state vector and



Riccati gain function obtained from the solution to a Riccati equation\with

delayed arguments.

As an alternate scheme, one can define

(t~a) Lo [ .4
Then:

[uo()] -R- [Rl )B1(-)0i(t-)1 0 ta p(,taxta

e e

where p (;a) satisfies thM Rtccati equation in the control law block diagram of

Figure 4. This representatioz, of v°(.) exposer the "simple predictor" portion of

the control law, i.e., •xp(t) p *p(t,t-o)x p(t-a). The evader can; form xp(t) with

certainty, since it -- determined solely by P's dynandlcs. This control law also

requires the solution of a Riccati equation with delay arguments. It is clear

from this representation that the effect of introducing the time. delay is to

create both a predictor and a a-dependent Riccati gain 'n E's optimal strategy.

IV. CONTROL LAW COMPARISON

In practice, an information delay may not be detecteU by E. E would then

be led to synthesize the DGWFI control law in ignorance of the fact that x(t-a)

was being observed instead of x(t). Or, an aware E may si-t v conjecture that

the delay is of no consequence. We call tae control law wh:ý',, uses the delayed

state in the DGWFI law a "direct insertion feedback law"(DT-'•). Another
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possibility is that E can simply predict - in the manner already mentioned -

P's present state and continue to use the Riccati gain of the DGWFI law. These

two suboptimal control laws may be appealing because they don't require the use

of delayed arguments in the Riccati equation solutions for their feedback gain

functions. One might even expect reasonable performance from the predictor law

since it synthesizes a portion of the DGWITL law. Both of the alternate control

laws can be formed in Figure 4 by setting a=0 in both the predictor and gain

generator and in only the gain generator, respectively. In applying game theory

we would like to know whether it is important to take into account i. formation

time delays in a competitive situation, or whether it is sufficient to use one

of the suboptimal schemes described here. Although the answer to these questions

depends on the individual DG, we provide, by means of an example, a quantitative

illustration of the effect of information delays, with the intention of giving

both an insight about the approach that can be taken for the study of other

examples and a demonstration of the importance of such consideration in practical

problems. We demonstrate that even small information lags (relative to the time

constants) can lead to serious performance degradation if the delay is ignored

and the DIFBK law is used. At the same time, a simple predictor may likewise

be inadequate. We also show that the DGWITL law effectively compensates for the

information time lag and results in a marked improvement in performance. In

addition to comparing these control laws, we examine the effect of the time lag

on the existence of the solution to a DG example, i.e., the effect of time lag

on the oc':urrence of a conjugate point in the delayed argument Riccati equation

solution.

To illustrate the various DoiptF in the preceding di6cussion we consider the

scalar versioi, nf the linear regulatcr results. The equations c: motion are

LJ
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x ax +b '(
P pP P

Xe aexe + be, (9)

and all parameters are scalar constants. The remaining payoff is taken to be:

Jr(.- Ixp(T) M - x(T) 12 + fT-u 2 (a)d
P

_ 1 tT 2 (ad + 1 fT u2 (a)do, (10)

ce t c T-G

with a = T-t, C > 0, c > 0 and T fixed. The potential terminal payoff is the

solution to the optimal control problem given by

12 1 fT -2(d}

W(x p(T-o),T-a,xe(T),T) = rain~lp(T) - xe(T) + c T- a
U•Ku p

subject to x = apxp + bpU, T-a < t < T, x p(T-o) given.p pp p p

The solution can easily be shown to be:

a2

W(x (T-),T-,x e(T),T) -[e Px (T-o) - Xe (T)]2

c b 2a a1 + P [e p -I]
2a

p

The potential payoff is:

a o

[e p xp(T-a) - xe (T)2 T 2  1 T2- + f u2(.)dc - f v2(.)do.2 C T Ce

c b 22a a e
2a
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By performing the analysis which was described in the preceding sections we are
able to show that the potential value and the optimal strategies have the following

solution:

* a (T-0) ae (T-t) e-[e p x _ e • ]

Ge(T,t)

pa (T-T) a (T-t) a (T-¶)

e -cebe[e x e x e P(X ,., e t e ee

p eG(T, t) (12)

,, a (T-t) a (T-t) a (T-t)v0 (Xp,r,xt). ee Xp -e e e

p e G(T,t) (13)

where:

c b 2  2a (T-T) c b 2  2
•' • 2a(T-t)

2a1] 
(14)" p 2e

Alternately:

a (T-t+a) a (T-t) 2

e ap x (t-o) - e e (T )(V*( XpX es t;()-I p 
(15

6(t;a) (15)

a (T-t+a) a (T-t) a (T-t+a)uxpeto) p p Xp~ta - t)

x t 
(16)

G(t;o) (6
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a (T-t+ot) a (T-t) ae(T-t)

v(xXt;o) ee e (17)
G (t; a)

and

c b2  2a (T-t+a) c b 2a (T-t)
+ 2a T ) ee e -1] (18)

G(t;a) i-.1 +2a- [e p -1] 2ap e

Figure 5 contains the block diagram for (15), with the "simple predictor" portion

highlighted.

It is easily verified that the conjugate point of the Riccati gain matrix

corresponding to (15) is solely determined by the zero crossing of G(t;a) in

the neighborhood of T, and ultimately on the relative value of the parameters

in (8), (9) and (10).

To explore the effect of information delay on the existence of solutions to

the linear DGWITL, we examine (14) and seek the locus of conjugate points in the

data reference plane. Letting TrCR(t) denote the value of c<T at which (14) has a

zero crossing we are able to locate the conjugate points for fixed system parameters.

For our purposes it is enough to present the results in Figure 6, which show TCR(t)

vs t for various system configurations, with b = 0.8, c = c = 1.0, a = -0.2,p p ep

ae = -0.4, and T - 5.0. The area under the curve defined by T CR() is the region

of the plane fo•c which G(.) is positive. Lines drawn parallel to and below the

line T-t correspond to DGWITL. For be - 1.35 the line T-t does not intersect TCR'

so neither the DGWFI or the DGWITL have conjugate points. For b - 1.4 the DGWFI
e

has a conjugate point at t - 3.5 secs. A DGWITL with 0<a<0.7 also has a conjugate
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point, and the time at which it occurs is farther from T than the time associated

with the 1)GWFI conjugate point. Hence, the information delay extends the half-

iaterval about T for which (18) is valid. For a > 0.7 the DGWITL does not have a

conjugate point. Thus, if sufficient information delay is present the conjugate

point vanishes. For b - 1.45 the DGWFI has a conjugate point at t - 3.8. Thee

DGWITL also has a finite-time conjugate point at t(). For a - 3, t - -1.25. These

three choices of be demonstrate that the information delay effectively lengthens

the solution interval about T and may extend it to -w, depending on the problem

parameters. Similar results can be obtained for formulations in which the pursuer

has an information delay.

To demonstrate the importance of properly compensating for information time

lag in a differential game, we now consider three control laws which may be

implemented in a DGWITL. The first control law is the DGWITL law of Figure 5.

The "direct insertion feedback" law (DIFBK) is synthesized by using the perfect

information control law in spite of the presence of delayed data. In Figure 5

this corresponds to setting a-0 in the Riccati gain and in the predictor. By

ignoring the time delay, E synthesizes this law. The third law we synthesize is

the "predictor feedback" law (PRFBK). This law approximates the DGWITL law by

setting a-0 in the Riccati gain while maintaining the correct a in the predictor.

In general, E might be motivated to do this by the requirement of solving the

generalized Riccati equation when the various system matrices are time varying.

Certainly this might be a reasonable scheme when P(.;a) is not sensitive to a over

the interval of interest.

To compare these control laws we simulated (8) and (9) and evaluated (10) on

a digital computer, using Runge-Kutta integration. Because the pursuer law given
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by (16) is not physically realizable (see [15]) we simulated a pursuer that

used the following DGWFI control law:

a (T-t) a e(T-t) a (T-t)
u0 [e pxxt(t)p e x (t)]e p

p e (19)
G(t;O)

For the purpose of simulating this control law, E's path history over [to-,to]

was taken to be the autonomous motion of (9) with terminal boundary condition

given by y(to). This corresponds more closely to a physical situation in which

E is inactive prior to being alerted that the conflict has commenced. For the

purposes of simulation, the following parameters remained: a = -. 2, a - -. 4,p e

b = .8, b = 1.2, c M 1.0, c = 1.0, T = 5.0. For a fixed x (t o-a) and x e(t )p e p e p

we then chose top to - 5.0 and simulated the game for various a, with

0 S-G -< 5.0. Thus, each choice of the pair (t o-a) corresponds to a different

game. Letting t 0 T results in simulations having a shorter interval of play0

for E. Since the physical data, x p(t o-a) and x e(t ),remain fixed for all

simulations, increasing a effectively changes the time corresponding to P's

location at the fixed x . This corresponds to the practical problem of determining
p

how the outcome varies as a function of the observation time associated with

the fixed spatial data. In general, control over starting times and initial data

may not be allowable, so the important comparison to be made is that which relates

the payoffs associated with the three control laws for a given ta, x p(t -a),

and xe (t ).

By letting x p(t o-a) - 10.0 and x e(t 0 20.0 we obtain the potential value,

V0, directly from (15). The behavior of V0 is displayed in figure 7. Figures

8-10 illustrate the simulated JTL' JDI' and JPR' the remaining payoffs when the

time lag control law, the direct insertion feedback law, and the predictor

feedback law are used, respectively, by E. The graphs show the behavior of

L.
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these payoffs for games beginning at various times and having various information

lags. Examination of the curves for a given t and a shows that the DGWITL
0

control law bounds the payoff from below by the potential value. Since P can't

realize the optimal exploitation control law, JTL is actually better than V°. At

the same time, the DIFBK and PRFBK laws permit large negative payoffs. It is

also of interest to note that serious performance degradation can occur when the

informaticn time lag is ignored (DIFBK), even for data lags that are small

relative to the time constants of the systems, e.g., for t - 0.0 and a- 1.0O

(the system time constants are 2.5 secs. and 5.0 secs.). Figure 11 illustrates

the relative performance of the control laws for t - 0.0 by showing the loss0

in payoff incurred by DIFBK (ni) and PRFBK (npR) normalized by the maximum

loss incurred by DIFBK for 0 $< a < 5.0.

To interpret the numerical data in more detail it should be noted that,

because the plants are stable and the initial cr-vdinates were both taken to be

positive, the natural motion of (8) over [to-o,to] works to P's disadvantage -

in the sense that if P was inactive over [to-o,to] the actual separation at

time t would be greater than Ixp(t 0-O) - xe(to) ). In Fig. 7 the potential

value is always bounded from below by zero, since E can choose to do nothing

in (9). For t - 5.0 the solution corresponds to the potential terminal
0

payoff.

Figure 12 shows the behavior of JTV JDI and JPR for the same spatial data

but with t - -5.0. For this game of longer duration (10 secs.) non-negligible

payoff degradation accompanies DIFBK and PRFBK control even for relatively

small information delays. Fig. 13 shows the P and E trajectories resulting from

DGWITL and DIFBK control by E. Although the terminal miss for DIFBK is better,

E's net performance is worse because the DIFBK law erroneously uses excessive

energy in the terminal phase of play. Figure 14 shows the remaining payoffs
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for a game of 5.0 secs. duration with different spatial coordinates. Here

the detrimental use of the DIFBK law is very apparent. Figure 15 shows

the payoffs for the samie spatial data but for play of 10 secs. duration.

Again, it is clear that ignoring the information delay can lead to serious

performance degradation. At the same time, even the predictor control law

leads to what might be considered to be unacceptable performance. On the other

hand, the DGWITL control law appears to lead to performance that is much

less senwitive to the information delay.

To display the effect of the relative location of P and E w.r.t. the

origin, we let x p(t -a) = 20.0 and x e(t 0 10.0. Figure 16 shows the plot

of the potential value. For ;iven t0, V*(W) decreases w.r.t. a for the

range of 0 shown, except for to = 5.0, where a slight increase occurs near

a = 5.0. The main effect causing this decrease of potential value as the data

ages is the natural component of P's motion over [to-G,t0]. This tends to place

the actual x (t ) closer to x (t ) with no effort on behalf of P. For a beyond
p 0 e 0

3.5 secs., however, this effect works to E's advantage.

Figures 17, 18 and 19 show J I and J for the various t and a.
3TL' ~DI PR 0

The superiority of the DGWITL control law is evident. Figure 20 shows these

payoffs for to = -5.0 (i.e., a 10 sec. game). 'ain, the payoff degradation

due to failure to compensate properly for the information delay is evident.

As an alternate scheme, we simulated the situation in which the pursuer

was inactive over [to-, ,to], thus the motion of both P and E was autonomous

over this intetval. Figures 21, 22 and 23 contain plots of x p(t -a) - 10.0

and x e(to) 0 20.0. Here we see that for large a and a short interval of play

(e.g., t -. 4.5 secs.) the DIFBK law does slightly better than the DGWITL law.
0

Since P is not synthesizing the exploitation control law, this is possible.

However, the DIFBK law does not provide E with the payoff-bounding property.
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Also, for-small a the superiority of the DGWITL law is retained. In comparing

Figs. 21-23 with Figs. 8-10, we expect the greatest difference in performance

to occur for larger a, where the effect of the different initialization scheme

is more pronounced. Fig. 24 illustrates the performance due to the three

control laws for to - 0.0 and xp (t0-0) - 10.0, Xe (t ) - 20.0. Figs. 25-27

are for spatial data of x p(to-a) - 20.0 and x e(t ) - 10.0. Fig. 28 contains

JTL(a), JDI(a) and JPR(o) for the same data and to - 0.0.

V. CONCLUSIONS.

It is clear from the few basic examples presented here that failure to

include a consideration of information delay in the synthesis of a control

law can result in serious performance degradation, even for relatively small

amounts of time delay. We expect that similar phenomena can occur in more

complex and realistic problems. Our work in this paper serves to demonstrate,

for the first time, that detectici of information delays and determination

of their significance by means of the DGWITL theory should be part of the

overall synthesis procedure in situations of dynamic conflict.

From an engineering viewpoint, the DGWITL theory provides the framework

within which the system designer can assess the payoff degradation due to

information delay and establish acceptable amounts of delay. The control law

synthesized by the DGWITL theory can also be used as a means for comparing

the performance of suboptimal control laws, such as the predictor law used

in the examples. In general it is necessary to perform the assessment over

the regime of spatial data for the problem. Some spatial regimes may admit

the use of a suboptimal law, while others may require the DGWITL law in order

to maintain system performance. Not only does the DGWITL theory allow the

system designer to assess the payoff degradation; it also provides the designer

with an important engineering option. If the DGWITL law can maintain acceptable

performance over a spatial regime, then the designer has the option of deliberately

introducing information delay so that a single slower computer - data acquisition

system may be used, or a sufficiently fast computer - data acquisition system

may be used to simultaneously control several systems, each of which employs

LI
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a DGWITL controller . These engineering tradeoffs underscore the relevance

and importance of the theory of differential games with information delay.

i

* For a hypothetical example, from Fig. 20 it is clear that the DGWITL law would

enable use of a computer - data acquisition system which generated a one second
information delay; alternately, more than one system may possibly be controllable
by a faster computer which presented each system with the same one second delay.
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Fig. 3. Evader DGWTTL Control Law.
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